Accepted to Advances in Geometry CHARACTERIZATION OF ISOMETRIC EMBEDDINGS OF GRASSMANN GRAPHS

نویسنده

  • MARK PANKOV
چکیده

Let V be an n-dimensional left vector space over a division ring R. We write Gk(V ) for the Grassmannian formed by k-dimensional subspaces of V and denote by Γk(V ) the associated Grassmann graph. Let also V ′ be an n′-dimensional left vector space over a division ring R′. Isometric embeddings of Γk(V ) in Γk′ (V ′) are classified in [13]. A classification of J(n, k)-subsets in Gk′ (V ′), i.e. the images of isometric embeddings of the Johnson graph J(n, k) in Γk′ (V ′), is presented in [12]. We characterize isometric embeddings of Γk(V ) in Γk′ (V ′) as mappings which transfer apartments of Gk(V ) to J(n, k)-subsets of Gk′ (V ′). This is a generalization of the earlier result concerning apartment preserving mappings [11, Theorem 3.10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric embeddings of Johnson graphs in Grassmann graphs

Let V be an n-dimensional vector space (4 ≤ n < ∞) and let Gk(V ) be the Grassmannian formed by all k-dimensional subspaces of V . The corresponding Grassmann graph will be denoted by Γk(V ). We describe all isometric embeddings of Johnson graphs J (l,m), 1 < m < l − 1 in Γk(V ), 1 < k < n − 1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J (n, k...

متن کامل

Isometric Embeddings of Half-Cube Graphs in Half-Spin Grassmannians

Let Π be a polar space of type Dn. Denote by Gδ(Π), δ ∈ {+,−} the associated half-spin Grassmannians and write Γδ(Π) for the corresponding half-spin Grassmann graphs. In the case when n ≥ 4 is even, the apartments of Gδ(Π) will be characterized as the images of isometric embeddings of the half-cube graph 1 2 Hn in Γδ(Π). As an application, we describe all isometric embeddings of Γδ(Π) in the ha...

متن کامل

Reciprocal Degree Distance of Grassmann Graphs

Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u  d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.

متن کامل

Isometric embeddings in Hamming graphs

The results presented in this paper are parts of my doctoral thesis [ 193; the algorithm and some of the characterizations in Section 7 have been introduced in [ 181. Motivation for isometric embeddings into Hamming graphs has come from communication theory (Graham and Pollak [ 121) an-d linguistics (Firsov 1181). Isometric subgraphs of Hamming graphs also appear in biology as “quasi-species” (...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013